Jump to content

introverter

Members
  • Posts

    209
  • Joined

  • Last visited

  • Days Won

    9

introverter last won the day on September 12 2020

introverter had the most liked content!

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

introverter's Achievements

  1. As noted by others this might only apply if you choose to feed back to the grid. Also as mentioned feeding back in terms of "selling" to the municipality seldome makes financial sense. I think you can basically differentiate 3 types of installs/applications 1) the eskom grid part of your home and the solar part of your home are in some way connected (even if technically "separated" by a transfer switch) - and you want to sell back excess power to the municipality. = most complicated process and one that requires approved inverters, fancy electricity meters etc. (that get installed at your cost most of the time). 2) the eskom grid part of your home and the solar part of your home are in some way connected (even if technically "separated" by a transfer switch) - and you do NOT want to sell back excess power to the municipality. = probably exacly as complicated as option 1 in terms of application/permission process but you should be able to remain on a more sensible tarrif and *potentially* keep your prepaid meter. 3) the solar part of your home has no way to ever come in to contact with any part of the eskom/municipality grid. = simplest process but still need to inform municipailty and usually supply an electrician signed off COC that the install meets all national and local install rules. Even if the municipality does not force a change, there could be a problem with the meter actually tripping. @Bobster's meter goes a bit strange but other meters will trip during a slight unintended feedback (happens when PV is powering a big load that then suddenly switches off - Inverter is slow to respond and for a short while some power is fed through the meter which most will consider as a tamper type event).
  2. Definitely and absolutely no apology needed. (hope my post/s did not imply any nuisance value of your questions). Thanks for reporting back - I will guarantee you that you are not the first and definitely not the last person to go through this but at least your posts will help someone else to track down their problem
  3. Road trip! Best I can do to almost head back on topic...
  4. Suspect lowering convective heat loss is a big contributor of the blankets (blowing on your tea to cool it down vs covering the cup with the saucer and then blowing). In summer it is almost too effective - pool water at > 30 degree C not much of a way to cool down
  5. find this very useful at times https://www.victronenergy.com/upload/documents/Wiring-Unlimited-EN.pdf
  6. ... ... I too tilt at windmills
  7. the difference between the german sounding pianos and the wannabes being that anything played in the key of G having a slightly guttural quality to it...
  8. I have a 45 000 liter pool. On roughly 80% of the surface my double garage roof I have (now bypassed) some of these solar "mats" (multiple rows of little black pipes) that are warmed by the sun before the water returns to the pool. I have found a bubble pool cover way more effective at raising the pool temperature. Another major benefit is that I have not used tap water in over three years to top up my pool (do at times add a bit from rain water harvested from the roof) - the cover also helps a bit to keep leaves and crap out of the pool. Just get a cover with a roll up station other wise opening the pool feels too much like a chore. One way to reduce your particular pool pump running time... If looking at other ways to reduce electrcity costs I found the following when looking at the various options: 1) Variable flow pumps (pump runs slower depending on settings - drawback is that these are quite expensive and you pool cleaner may not work on the lower settings). 2) Purpose made solar (PV) pool pumps (normally a DC motor that will start running slowly when solar output is low and then pick up speed as solar output increases then slow down again as solar output decreases - you basically leave the pump to run the whole day. Again also not cheap. Think the bundupower ones are PV DC). 3) PV add-on options for exisitng AC pumps. (normally some variant of a solar controller and Variable Speed Drive - the Speck systems as mentioned by @Richard Mackay should be a variant of this. Again not cheap). I suspect the specks are actually made by Microcare and sustainable still lists the actual microcare options. I normally try to support local but at the time could not get any response from Microcare unfortunately. In the end when I looked at these options the intial cost just did not make it worthwhile in terms of return on investment for me . If I was going to look at this now again, purely with an eye on keeping electricity costs down I would look at my options for a grid-tied inverter as mentioned by @Plaashaas. I would consider splitting my DB and maybe have my pool and kitchen on a "savings circuit" which is fed by a grid-tied inverter which can blend incoming AC (the idea is NOT to export anything to the grid). Having the grid-tied inverter allows Eskom to help start the motor without needing a 5000W+ inverter (which after startup will be running at ~1300W). Having the kitchen on this same "savings circuit" means that at times when the pool is maybe not runnning that my fridges get the benefit of reduced eskom power consumption from the Rxxxx-xx system I installed. I also do not have to worry will my pool motor even work with a VSD, if it does having another component that can fail etc. If some clouds drift past the sun the pool pump does not sound like a learner driver trying to still master clutch control. Part 2 of my blog: The major issue is the startup. My 1.1kW pool pump (actual brand name "Quality".....) with a 7A run rating draws at least 30A in the first 100ms (i.e. 30A*230V=6900W). Even though i.i.r.c. @plonkster started a 1kW pump with a 3kW victron you will likely want to go a bit bigger on the inverter.
  9. unless really wanting all that the sonoffs etc. offer a basic watt/power meter like this could be much simpler to check most plug-in loads...
  10. https://www.victronenergy.com/media/pg/2556-GX_Device_Manual_Venus_GX/en/dvcc---distributed-voltage-and-current-control.html
  11. @Dirkie Crous, curious whether you managed to track down whatever keeps the meter counting?
  12. out of interest and possible completeness for anyone with a more useful contribution that stumbles on this, @Ingo is your system: ESS consisting of Quattro + Venus GX + Battery + 1 wired temp sensor connected to Quattro + 1 wired temp sensor connected to Venus GX and then also try to add VE.Bus dongle ? Is this on a (Bluenova?) LiFePO4 battery with comms? If so, why the two external temp sensors even before the VE.Bus dongle is added - does the BMS not provide voltage and temp info to the Venus GX? I am curious about the potential role and conflicts of an ESS system with BMS provided voltage+temp info and TWO extra external wired temp sensors (Quattro and Venus) and now a potential third voltage+temp source (VE.Bus dongle). Something in the victron manuals leave me with a hunch that a single source of both voltage and temperature (like the dongle) could be bumped up the pecking order over a source that only provides one or the other. Even then, should this override BMS info? Any other assistants running? @plonkster IF the BMS provides voltage+temp info, I would assume no external temp sensor should influence charge voltage?
  13. I would wonder about your general warm water use patterns. Bath vs shower, duration, frequency, etc. (6 x full, hot baths 6AM-7AM will take some heating where solar benefit could be diminished). Parents/you/teens mostly home during day (assuming non enforced Covid changes)? The bulk electricity use during the day will be oddish (barring the pool pump) if no one is home during the day. Still coming out of winter... electric heaters on big part of the day? Parents making tea often (boiling a full 2L kettle multiple a times to make 1 cup)? Check pool pump flow rate spec and pool water volume and see if you actually need 6 - 8 hours (think general advise is to circulate/turn over the total volume of pool water about once in 24h) . When not using the pool during winter it can likely be even less - even more so if the pool is covered (also very good for reducing water loss...anyone remember that thing called drought?). My pool pump is about 1/2 my household electricty consumption. Something like an effergy can be useful to identify times of increased electricity use. I prefer the basic effergy which is not web based. Put the CT clamp on the mains breaker in the DB for a week, then use the software to check the graphs for spikes (you might then already be able to identify where electricity consumption spikes correlate with certain events). If you have the time, then the/a prepaid meter self can help identify consuming loads. If daily routine is fairly predictable, then one "standard day" check you prepaid balance units, (switch off the pool pump breaker the night before), end of day check prepaid units, next day repeat exercise but allow pool to run - now you have a much more accurate indication (units and R/c) of what the pool pump consumes. If you have a prepaid meter with little light that blinks at a higher frequency the greater the power use, then you can switch off circuits in the DB to see which circuit (geyser / / living room plugs / etc.) contributes greatest to the speed of blinking. Will give you an idea whether maybe the PC running in the study the whole day is using more electricity than you thought.
  14. Maybe not a bad idea. Like I said, Murphy knows where I live, so I err on the side of caution..... same reason a MTB with only half a fork makes me nervous the sonoff people also try quite hard with the basic R3 to ensure that you must be really motivated to tinker with it with that double decker PCB setup..
×
×
  • Create New...